GeminiLLMConfiguration#
- class council.llm.GeminiLLMConfiguration(model: str, api_key: str)[source]#
Bases:
LLMConfigurationBase
- __init__(model: str, api_key: str) None [source]#
Initialize a new instance
- Parameters:
api_key (str) – the api key
model (str) –
- property api_key: Parameter[str]#
Gemini API Key
- property model: Parameter[str]#
Gemini model
- property temperature: Parameter[float]#
Amount of randomness injected into the response. Ranges from 0 to 1. Use temp closer to 0 for analytical / multiple choice, and closer to 1 for creative and generative tasks.
- property top_k: Parameter[int]#
Only sample from the top K options for each subsequent token. Used to remove “long tail” low probability responses.
- property top_p: Parameter[float]#
Use nucleus sampling. In nucleus sampling, we compute the cumulative distribution over all the options for each subsequent token in decreasing probability order and cut it off once it reaches a particular probability specified by top_p.