OllamaLLMConfiguration#
- class council.llm.OllamaLLMConfiguration(model: str, keep_alive: float | str | None = None, json_mode: bool = False)[source]#
Bases:
LLMConfigurationBase
- __init__(model: str, keep_alive: float | str | None = None, json_mode: bool = False) None [source]#
Initialize a new instance
- Parameters:
model (str) – model name to use from https://ollama.com/library
keep_alive (Optional[float | str]) – ollama keep_alive parameter
json_mode (bool) – whenever to use json mode, default False
- property model: Parameter[str]#
Ollama model.
- property keep_alive: Parameter[str]#
Number of seconds / duration string to keep model in memory. See https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-keep-a-model-loaded-in-memory-or-make-it-unload-immediately
- property keep_alive_value: float | str | None#
Convert keep_alive parameter to a format expected by ollama.
- property json_mode: Parameter[bool]#
Whenever to return json. Will be converted into ollama format parameter.
- property format: Literal['', 'json']#
The format to return a response in.
- property mirostat: Parameter[int]#
Enable Mirostat sampling for controlling perplexity.
- property mirostat_eta: Parameter[float]#
Learning rate for Mirostat sampling.
- property mirostat_tau: Parameter[float]#
Controls balance between coherence and diversity.
- property num_ctx: Parameter[int]#
Context window size.
- property repeat_last_n: Parameter[int]#
Look back size for repetition prevention.
- property repeat_penalty: Parameter[float]#
Penalty for repetition.
- property temperature: Parameter[float]#
The temperature of the model.
- property seed: Parameter[int]#
Random seed.
- property stop: Parameter[str]#
Stop sequence.
- property stop_value: List[str] | None#
Format stop parameter. Only single value is supported currently.
- property tfs_z: Parameter[float]#
Tail free sampling parameter.
- property num_predict: Parameter[int]#
Maximum number of tokens to predict.
- property top_k: Parameter[int]#
Only sample from the top K options for each subsequent token. Used to remove “long tail” low probability responses.
- property top_p: Parameter[float]#
Use nucleus sampling. In nucleus sampling, we compute the cumulative distribution over all the options for each subsequent token in decreasing probability order and cut it off once it reaches a particular probability specified by top_p.
- property min_p: Parameter[float]#
Minimum probability for token consideration